The team applied methods from astronomy to quantify and compare eyeball reflections. They used the Gini coefficient, typically employed to measure light distribution in galaxy images, to assess the uniformity of reflections across eye pixels. A Gini value closer to 0 indicates evenly distributed light, while a value approaching 1 suggests concentrated light in a single pixel.
Credit:
Adejumoke Owolabi
In the Royal Astronomical Society post, Pimbblet drew comparisons between how they measured eyeball reflection shape and how they typically measure galaxy shape in telescope imagery: “To measure the shapes of galaxies, we analyze whether they’re centrally compact, whether they’re symmetric, and how smooth they are. We analyze the light distribution.”
The researchers also explored the use of CAS parameters (concentration, asymmetry, smoothness), another tool from astronomy for measuring galactic light distribution. However, this method proved less effective in identifying fake eyes.
A detection arms race
While the eye-reflection technique offers a potential path for detecting AI-generated images, the method might not work if AI models evolve to incorporate physically accurate eye reflections, perhaps applied as a subsequent step after image generation. The technique also requires a clear, up-close view of eyeballs to work.
The approach also risks producing false positives, as even authentic photos can sometimes exhibit inconsistent eye reflections due to varied lighting conditions or post-processing techniques. But analyzing eye reflections may still be a useful tool in a larger deepfake detection toolset that also considers other factors such as hair texture, anatomy, skin details, and background consistency.
While the technique shows promise in the short term, Dr. Pimbblet cautioned that it’s not perfect. “There are false positives and false negatives; it’s not going to get everything,” he told the Royal Astronomical Society. “But this method provides us with a basis, a plan of attack, in the arms race to detect deepfakes.”